Food Processing
Contents

List of Contributors, xi

1 Principles of Food Processing, 1
Sung Hee Park, Buddhi P. Lamsal, and V.M. Balasubramaniam
1.1 Processing of foods: an introduction, 1
1.2 Unit operations in food processing, 2
1.3 Thermophysical properties, microbial aspects, and other considerations in food processing, 4
1.4 Common food preservation/processing technologies, 7
1.5 Other food processing/preservation technologies, 12
1.6 Emerging issues and sustainability in food processing, 13
1.7 Conclusion, 13

2 Thermal Principles and Kinetics, 17
Prabhat Kumar and K.P. Sandeep
2.1 Introduction, 17
2.2 Methods of thermal processing, 17
2.3 Microorganisms, 20
2.4 Thermal kinetics, 21
2.5 Thermal process establishment, 24
2.6 Thermal process calculation, 26
2.7 Thermal process validation, 28
2.8 Process monitoring and control, 29
2.9 Emerging processing technologies, 29
2.10 Future trends, 30

3 Separation and Concentration Technologies in Food Processing, 33
Yves Pouliot, Valérie Conway, and Pierre-Louis Leclerc
3.1 Introduction, 33
3.2 Physical separation of food components, 34
3.3 Processes involving phase separation, 37
3.4 Membrane separations, 46
3.5 Sustainability of separation technologies in food processing, 57

4 Dehydration, 61
Robert H. Driscoll
4.1 Introduction, 61
4.2 Drying and food quality, 61
4.3 Hot air drying, 62
4.4 Drying theory, 67
4.5 Drying equipment, 71
4.6 Analysis of dryers, 75
4.7 Sustainability, 77
4.8 Conclusion, 77
10 Food Safety and Quality Assurance, 233
Tonya C. Schoenfuss and Janet H. Lillemo
10.1 Introduction, 233
10.2 Elements of total quality management, 233
10.3 Hazard Analysis Critical Control Point (HACCP) system, 235
10.4 Sanitary processing conditions, 236
10.5 Supporting prerequisite programs, 242
10.6 Product quality assurance, 245
10.7 Conclusion, 246

11 Food Packaging, 249
Joongmin Shin and Susan E.M. Selke
11.1 Introduction, 249
11.2 Functions of food packaging, 249
11.3 Packaging systems, 250
11.4 Materials for food packaging, 251
11.5 Other packaging types, 263
11.6 Sustainable food packaging, 268

12 Food Laws and Regulations, 275
Barbara Rasco
12.1 Introduction, 275
12.2 The regulatory status of food ingredients and additives, 276
12.3 Adulteration and misbranding, 276
12.4 The global food trade: risk from adulterated and misbranded foods, 279
12.5 US Department of Agriculture programs, 280
12.6 Environmental Protection Agency programs, 283
12.7 The Food Safety Modernization Act, 283
12.8 Summary, 291

13 Crops – Cereals, 293
Kent D. Rausch and Vijay Singh
13.1 Introduction, 293
13.2 Industrial corn processing for food uses, 293
13.3 Industrial wheat processing for food uses, 300
13.4 Sustainability of corn and wheat processing, 302

14 Crops – Legumes, 305
George Amponsah Annor, Zhen Ma, and Joyce Irene Boye
14.1 Introduction, 305
14.2 Technologies involved in legume processing, 306
14.3 Traditional processing technologies, 307
14.4 Modern processing technologies, 310
14.5 Ingredients from legumes, 312
14.6 Novel applications, 329
14.7 Conclusion, 331

15 Processing of Fruit and Vegetable Beverages, 339
José I. Reyes-De-Corcuera, Renée M. Goodrich-Schneider, Sheryl Barringer, and Miguel A. Landeros-Urbina
15.1 Introduction, 339
15.2 Juices, 341
15.3 Nectars, 356
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4</td>
<td>Clean-in-place, 358</td>
<td></td>
</tr>
<tr>
<td>15.5</td>
<td>Conclusion, 360</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Fruits and Vegetables – Processing Technologies and Applications, 363</td>
<td>Nutsuda Sumonsiri and Sheryl A. Barringer</td>
</tr>
<tr>
<td>16.1</td>
<td>Raw materials, 363</td>
<td></td>
</tr>
<tr>
<td>16.2</td>
<td>Basic processing, 369</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Milk and Ice Cream Processing, 383</td>
<td>Maneesha S. Mohan, Jonathan Hopkinson, and Federico Harte</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction, 383</td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>Physical and chemical properties of milk constituents, 383</td>
<td></td>
</tr>
<tr>
<td>17.3</td>
<td>Milk handling, 386</td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>Dairy product processing, 391</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>US regulations for milk and milk products, 400</td>
<td></td>
</tr>
<tr>
<td>17.6</td>
<td>Sustainability of the dairy industry, 402</td>
<td></td>
</tr>
<tr>
<td>17.7</td>
<td>Conclusion, 402</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Dairy – Fermented Products, 405</td>
<td>R.C. Chandan</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction, 405</td>
<td></td>
</tr>
<tr>
<td>18.2</td>
<td>Consumption trends, 406</td>
<td></td>
</tr>
<tr>
<td>18.3</td>
<td>Production of starters for fermented dairy foods, 406</td>
<td></td>
</tr>
<tr>
<td>18.4</td>
<td>Biochemical basis of lactic fermentation for flavor and texture generation, 410</td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>Yogurt, 410</td>
<td></td>
</tr>
<tr>
<td>18.6</td>
<td>Cultured (or sour) cream, 422</td>
<td></td>
</tr>
<tr>
<td>18.7</td>
<td>Cheeses, 424</td>
<td></td>
</tr>
<tr>
<td>18.8</td>
<td>Sustainability efforts in whey processing, 431</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Eggs and Egg Products Processing, 437</td>
<td>Jianping Wu</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction, 437</td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td>Shell egg formation, 437</td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>Structure of eggs, 438</td>
<td></td>
</tr>
<tr>
<td>19.4</td>
<td>Chemical composition of eggs, 440</td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>Shell egg processing, 441</td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td>Further processing of eggs and egg products, 444</td>
<td></td>
</tr>
<tr>
<td>19.7</td>
<td>Liquid egg products, 445</td>
<td></td>
</tr>
<tr>
<td>19.8</td>
<td>Pasteurization, 446</td>
<td></td>
</tr>
<tr>
<td>19.9</td>
<td>Desugarization, 448</td>
<td></td>
</tr>
<tr>
<td>19.10</td>
<td>Dehydration, 449</td>
<td></td>
</tr>
<tr>
<td>19.11</td>
<td>Egg further processing (value-added processing), 449</td>
<td></td>
</tr>
<tr>
<td>19.12</td>
<td>Sustainability, 450</td>
<td></td>
</tr>
<tr>
<td>19.13</td>
<td>Conclusion, 450</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Fats and Oils – Plant Based, 457</td>
<td>Amy S. Rasor and Susan E. Duncan</td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction, 457</td>
<td></td>
</tr>
<tr>
<td>20.2</td>
<td>Sources, composition, and uses of plant-based fats and oils, 457</td>
<td></td>
</tr>
<tr>
<td>20.3</td>
<td>Properties of plant-based fats and oils, 460</td>
<td></td>
</tr>
<tr>
<td>20.4</td>
<td>Nutritional areas of interest, 461</td>
<td></td>
</tr>
<tr>
<td>20.5</td>
<td>Degradation of plant-based fats and oils, 462</td>
<td></td>
</tr>
</tbody>
</table>
20.6 General handling considerations, 463
20.7 Recovery of oils from their source materials, 463
20.8 Refining, 466
20.9 Modification of plant-based fats and oils, 469
20.10 Packaging and postprocessing handling, 473
20.11 Margarine processing, 473
20.12 Mayonnaise processing, 476
20.13 Sustainability, 477

21 Fats and Oils – Animal Based, 481
Stephen L. Woodgate and Johan T. van der Veen
21.1 Introduction, 481
21.2 Raw materials, 481
21.3 Land animals, 482
21.4 Processing methods, 484
21.5 EU legislation, 487
21.6 Safety, 488
21.7 Characteristics and quality, 490
21.8 Applications, 493
21.9 Health aspects, 496
21.10 Sustainability, 497
21.11 Conclusion, 497

22 Aquatic Food Products, 501
Mahmoudreza Ovissipour, Barbara Rasco, and Gleyn Bledsoe
22.1 Introduction, 501
22.2 Aquatic plants and animals as food, 501
22.3 Cultivation, harvesting, and live handling – reducing stress and maintaining quality, 502
22.4 Animal welfare issues in fisheries, 507
22.5 Harvesting methods and effect on quality, 507
22.6 Reducing stress in live handling, 508
22.7 Fishing methods, 510
22.8 Refrigerated products, 514
22.9 Freezing and frozen products, 515
22.10 Surimi and surimi analog products, 520
22.11 Curing, brining, smoking, and dehydration, 521
22.12 Additives and edible coatings, 524
22.13 Roes and caviar, 525
22.14 Other non-muscle tissues used as food, 528
22.15 Fish meal and protein hydrolyzates, and fish oil, 530
22.16 Sustainability, 531
22.17 Summary, 532

23 Meats – Beef and Pork Based, 535
Robert Maddock
23.1 Introduction, 535
23.2 Beef and pork characteristics and quality, 535
23.3 General categories of beef and pork processing, 537
23.4 Equipment needed in beef and pork processing, 545
23.5 Beef and pork processing and HACCP, 547
23.6 Sustainability, 547
24 Poultry Processing and Products, 549
 Douglas P. Smith
 24.1 Poultry processing, 549
 24.2 Turkey processing, 562
 24.3 Duck processing, 562
 24.4 Microbiology and food safety, 563
 24.5 Sustainable poultry production and processing, 564
 24.6 Conclusion, 565

Index, 567
List of Contributors

George Amponsah Annor
Department of Nutrition and Food Science
University of Ghana
Legon-Accra, Ghana

V.M. (Bala) Balasubramaniam
Department of Food Science and Technology
The Ohio State University
Columbus, OH, USA
and
Department of Food Agricultural and Biological Engineering
The Ohio State University
Columbus, OH, USA

Sheryl A. Barringer
Department of Food Science and Technology
The Ohio State University
Columbus, OH, USA

Glyn Bledsoe
College of Agricultural and Life Sciences
University of Idaho
Moscow, ID, USA

Joyce Irene Boye
Food Research and Development Centre
Agriculture and Agri-Food Canada
Québec, Canada

R.C. Chandan
Global Technologies, Inc.
Minneapolis, MN, USA

Haiqiang Chen
Department of Animal and Food Sciences
University of Delaware
Newark, DE, USA

Stephanie Clark
Department of Food Science and Human Nutrition
Iowa State University
Ames, IA, USA

Valérie Conway
Department of Food Science and Nutrition
Université Laval
Québec, Canada

Ali Demirci
Department of Agricultural and Biological Engineering
Pennsylvania State University
University Park, PA, USA

Robert H. Driscoll
School of Chemical Engineering
The University of New South Wales
Sydney, Australia

Susan E. Duncan
Department of Food Science and Technology
Virginia Tech
Blacksburg, VA, USA

Duygu Ercan
Department of Agricultural and Biological Engineering
Pennsylvania State University
University Park, PA, USA

Colette C. Fagan
Department of Food and Nutritional Sciences
University of Reading
Reading, Berkshire, UK

Renée M. Goodrich-Schneider
Food Science and Human Nutrition Department
University of Florida
Gainesville, FL, USA

Sundaram Gunasekaran
Food and Bioprocess Engineering Laboratory
University of Wisconsin-Madison
Madison, WI, USA

Federico Harte
Department of Food Science and Technology
University of Tennessee
Knoxville, TN, USA
List of Contributors

Jonathan Hopkinson
Danisco USA
New Century, KS, USA

Gulten Izmirlioglu
Department of Agricultural and Biological Engineering
Pennsylvania State University
University Park, PA, USA

Christian James
Food Refrigeration and Process Engineering Research Centre
The Grimsby Institute
Grimsby, UK

Stephen J. James
Food Refrigeration and Process Engineering Research Centre
The Grimsby Institute
Grimsby, UK

Stephanie Jung
Department of Food Science and Human Nutrition
Iowa State University
Ames, IA, USA

Prabhat Kumar
Research and Development
Frito Lay
Plano, TX, USA

Buddhi P. Lamsal
Department of Food Science and Human Nutrition
Iowa State University
Ames, IA, USA

Miguel A. Landeros-Urbina
Coca-Cola FEMSA
Mexico City, Mexico

Pierre-Louis Leclerc
Department of Food Science and Nutrition
Université Laval
Québec, Canada

Janet H. Lillemo
Lillemo & Associates, LLC
Plymouth, MN, USA

Zhen Ma
Food Research and Development Centre
Agriculture and Agri-Food Canada
Québec, Canada

Robert Maddock
Department of Animal Sciences
North Dakota State University
Fargo, ND, USA

Kevin McDonnell
Bioresources Research Centre
School of Biosystems Engineering
University College Dublin
Dublin, Ireland

Maneesha S. Mohan
Department of Food Science and Technology
University of Tennessee
Knoxville, TN, USA

Fionnuala Murphy
Bioresources Research Centre
School of Biosystems Engineering
University College Dublin
Dublin, Ireland

Hudaa Neetoo
Faculty of Agriculture
University of Mauritius
Réduit, Mauritius

Mahmoudreza Ovissipour
School of Food Science
Washington State University
Pullman, WA, USA

Sung Hee Park
Department of Food Science and Technology
The Ohio State University
Columbus, OH, USA

Yves Pouliot
Department of Food Science and Nutrition
Université Laval
Québec, Canada

Barbara Rasco
School of Food Science
Washington State University
Pullman, WA, USA

Amy S. Rasor
Department of Food Science and Technology
Virginia Tech
Blacksburg, VA, USA
Kent D. Rausch
Department of Agricultural and Biological Engineering
University of Illinois
Urbana, IL, USA

José I. Reyes-De-Corcuera
Department of Food Science and Technology
University of Georgia
Athens, GA, USA

K.P. Sandeep
Department of Food, Bioprocessing and Nutrition Sciences
North Carolina State University
Raleigh, NC, USA

Tonya C. Schoenfuss
Department of Food Science
University of Minnesota
St Paul, MN, USA

Susan E.M. Selke
School of Packaging
Michigan State University
East Lansing, MI, USA

Joongmin Shin
Packaging, Engineering and Technology
University of Wisconsin-Stout
Menomonie, WI, USA

Vijay Singh
Department of Agricultural and Biological Engineering
University of Illinois
Urbana, IL, USA

Douglas P. Smith
Prestage Department of Poultry Science
North Carolina State University
Raleigh, NC, USA

Nutsuda Sumonsiri
Department of Food Science and Technology
The Ohio State University
Columbus, OH, USA

Johan T. van der Veen
Ten Kate Holding
Musselkanaal, The Netherlands

Stephen L. Woodgate
Beacon Research
Clipston, Leicestershire, UK

Jianping Wu
Department of Agricultural, Food and Nutritional Science
University of Alberta
Edmonton, AB, Canada