acidity of foods 5–6
activation energies 68
active packaging 266
 antimicrobial agent releasers 267
 ethylene scavengers 267
 flavor and odor absorbers 267–8
 moisture absorbers 267
 oxygen scavengers 266–7
 temperature-controlled packagers 268
adsorption 116
agglomeration of legumes 312
aims of food processing 1, 7
air classification of legumes 311–12
air cooling 373
air systems for chilling or freezing 87–9
albumen 440
alcoholic beverages
 beer 122
 wine 121–2
alergens 241
alternative food processing technologies 137, 160–1
non-thermal processing
 comparison of methods 145–7
 high hydrostatic pressure processing (HHP) 144–50
 irradiation 150–1
 pulsed electric field (PEF) processing 155–6
 pulsed UV light (PL) processing 153–5
 ultrasound (US) processing 156–9
 ultraviolet light processing 151–3
sustainability and environmental issues 159
energy savings 159–60
reduced gas, emissions and water savings 160
solid waste generation 160
thermal processing
 infrared (IR) heating 140–1
microwave heating 137–9
 ohmic heating 141–2
 radiofrequency (RF) heating 139–40
 sous-vide 142–4
amylases 126–8
anthocyanins 365–7
antimicrobial packaging film 194–5
antimicrobial peptides (AMP) 177
apple
 blanching 375–6
 dehydation 377
apple juice beverages
 cultivation 348
 harvesting and handling 348
 major processors and markets 351
 processing 348
 clarification 349–50
 concentration 350
 juice extraction 349
 maceration 348–9
 microbial inactivation 350
 pasteurization 350
 washing and sorting 348
 product quality 351
apricot freezing 377
aquatic food products 501, 531
 additives 524–5
 polyphosphates 525
 carbon monoxide 525
 caviar 525
 types 526
 cultivation, harvesting and handling 502
 disease prevention and treatment 506–7
 finfish culture in ponds 502–4
 pen and cage culture systems 504–5
 summary of variety 503–4
 tanks and raceways 505–6
edible coatings 524
 fish meal and protein hydrolysates 530–1
fish oil 531
fish roe 526–8
fishing methods 510–12
 preparation for storage 512–14
 freezing and frozen products 515
 blast or forced air freezing 517
 contact/plate freezing 518
 cryogenic freezing 518–19
 fluidized bed freezing 517–18
 freezing methods 515–17
 glazing 519
 liquid immersion freezing 518
 quality changes during freezing 519–20
 water retention 519
 harvesting methods 507–8
other non-muscle tissues as food 528–30
 bone 530
 chitin and chitosan 529
 fish cartilage and skin 528–9
 gelatin 529
 isinglass 530
 shell and exoskeleton 530
 plants and animal 501–2
 processing
 brining 522–3
 cured and salted products 522
 curing 523–4
 dehydration 521–2
 smoked fish 524
 reducing stress in live handling 508
 ammonia 509
 controlling bacterial growth 508–9
 live holding and shipment 509–10
 oxygen 509
 pH 509
 salinity 509
 temperature 509
 water quality 509
 refrigeration 514–15
 surimi and surimi analog products 520–1

aquatic food products (cont’d)
sustainability 531–2
welfare issues 507
aqueous detergent fractionation 470
aseptic packaging 263–4
aseptic processing 8, 20
AseptiCal™ 28
autodiation 462
bacteria 20
baking 12
Ball formula method 26
batch dryers 72
batch fermentation 112
bean 306
blanching 375
beef 535
characteristics
composition 535–6
relationship between color, pH and water-holding capacity 536
tenderness 536–7
Hazard Analysis Critical Control Point (HACCP) 547
processing categories 537
bind values 540–1
cooked and precooked whole-muscle cuts 543–4
cooked sausages 544
dried whole-muscle product 545
fermented sausages 544–5
fresh ground 541–3
whole-muscle processing 537–40
processing equipment 545
emulsifier 546
grinder 545–6
injector 546
massagers 546
mixer 546
slicer 546
smokehouse 546–7
stuffer 546
tumbler 546
sustainability 547
beer 122
berries freezing 377
betalains 368
biodegradable nanocomposite packaging films 193–4
biodegradable packaging for foods 269–70
produced from agricultural crops 270–1
produced from polymers from bio-derived monomers 271
produced from polymers from microorganisms 271
produced from synthetic polymers 271–2
biological properties of foods 5
bioreceptors 174–5
antibodies 175
antimicrobial peptides (AMP) 177
aptamers 175–6
carbohydrates 176–7
biorecognition 176
challenges 172–4
conventional methods 177
nanomaterials-based methods 177–8
metallic nanoparticles (MNP) 178–82
quantum dots (QD) 182–5
surface-enhanced Raman spectroscopy (SERS) 185–91
blanching 8
chilling and freezing of foods 83–4
fruit and vegetable processing 375–6
blow moulding of plastics for packaging 256–7
bound moisture 67
bovine spongiform encephalopathy (BSE) 488, 489–90
bread fermentation stage 122
brewing and wine industry membrane separation 55
brining 522–3
Brunnauer, Emmett and Teller (BET) model for vapor adsorption 67
brush hydrogenation 471
buttermilk, cultured 118
candling of eggs 444
canning
can forming process 260
three-piece cans 260–1
two-piece cans 261
fruit and vegetable processing 378
legumes 311
capillary movement 68
chemical interesterification 472
chemical stability of foods 62
cheeses 119–20
Cheddar 428
additives 428
cheddaring 429
coagulation 428
cooking 428–9
cutting 428
hooping 429
milk heat treatment 428
milk standardization 428
milling 429
pressing 429
ripening 429
salting 429
starters 428
whey 429
mechanization 430
pasteurized process cheese 429–30
quality control 430–1
types 424–8
chickpea 306
chilling and freezing of foods 79, 102–3
aquatic food products 515
blast or forced air freezing 517
contact/plate freezing 518
cryogenic freezing 518–19
fluidized bed freezing 517–18
freezing methods 515–17
glazing 519
liquid immersion freezing 518
quality changes during freezing 519–20
water retention 519
blanching 83–4
effect on food safety and quality 79
flavor 82
microbiology and food safety 80–1
nutritional quality 81
texture 82–3
weight loss 81–2
environmental considerations 100–1
fruit and vegetable processing 376–7
heat transfer 86
conduction 86
convection 86
evaporation 87
radiation 86–7
principles of refrigeration 84
mechanical refrigeration systems 85
total loss refrigeration systems 84–5
retail display systems 95–8
frozen foods 99
unwrapped products 98
wrapped products 98–9
specifying, designing, and commissioning systems 101–2
storage systems 92–3
systems 87
air systems 87–9
contact systems 89
cryogenic systems 91
high-pressure freezing systems 91–2
ice systems 90–1
immersion/spray systems 89–91
scraped surface freezers 91
vacuum systems 91
temperatures, recommended 99–100
transport systems 93
air transport 94
land transport 94–5
sea transport 93–4
chitin and chitosan 529
chlorophyll 365
chromatography 117
citrus juice beverages
cultivation 341
harvest and handling 342–3
processing
enzyme inactivation 347
essential oils 344
extraction and finishing 343–4
frozen concentrate orange juice (FCOJ) 345
microbial inactivation 345
pasteurization 345–7
pulp recovery 344
product quality 347
sustainability 347–8
cleaning processes 4–5, 237
allergens 241
design and maintenance of plants and equipment 236–7
environmental testing 241–2
fruit and vegetable beverages 358–60
personal practices 238
pest control 240
water quality 240–1
in-place (CIP) 358–60
column dryers 74–5
come-up time (CUP) 24, 27
complaint management 243
concentration factor (CF) 49
convection heat transfer 3, 86
contact systems for chilling or freezing foods 89
contaminants, control of 239–40
continuous dryers 72–5
continuous fermentation 113
continuous stirred tank reactors (CSTRs) 112, 113
convection heat transfer 3, 86
corn see maize
corn masa process 299–300
corn starch hydrolyzates, uses 297
cream, sour (cultured) see sour cream
critical control points (CCPs) 236
cryogenic systems for chilling or freezing foods 91
crystallization 37–8
CTemp 28
curing 523–4
dairy products 402–3
fermented products 117, 405–6
buttermilk, cultured 118
cheeses 119–20, 424–31
consumption trends 406
kefir 118–19
lactic fermentation
biochemistry 410
sour cream 422–4
starter production 406–10
whey processing 431–5
yogurt 117–18, 410–22
fluid milk products 391
concentrated and evaporated milk 392
cream products 391–2
flavored milk 392
half and half 392
lactose-free and lactose-reduced milks 391
organic milks 391
whole to skim milk 391
membrane separation 53–4
sustainability 402
decimal reduction values 6, 22, 23
degumming of oils 466–8
dehulling of legumes 309–10
dehydration 61, 77
analysis of dryers
moisture and heat balances 75–7
aquatic food products 521–2
deterioration reactions in foods 61
chemical stability 62
microbial stability 61–2
physical stability 62
drying and food quality 61
drying theory
airflow, effect of 71
complete drying model 71
drying rate periods 68–9
falling rate periods 70–1
hysteresis 68
moisture definitions 67
moisture movement with products 68
psychrometric charts 69–70
vapor adsorption theories 67–8
egg products 449
equipment 71–2
batch dryers 72
continuous dryers 72–5
fruit and vegetable processing 377–8
hot air drying 62–3
evaporation of water 64
moisture content definitions 63–4
moisture content definitions 67
product equilibrium 61
psychrometric equations 64–5
wet bulb temperature 65–7
sustainability 77
desugaring of egg products 448–9
deterioration reactions in foods 61
chemical stability 62
microbial stability 61–2
physical stability 62
dioxin 490
distillation 38–9
draw and iron (DI) process 261
draw and redraw (DRD) process 261

Index 571

cheeses 424–31
collection trends 406
lactic fermentation 410
biochemistry 410
sour cream 422–4
starter production 406–10
whey processing 431–5
yogurt 410–22
downstream processing 114–15
cell disruption 115–16
purification 117
removal of insolubles 115
removal of solubles 116–17
food products 117
bread 122
buttermilk, cultured 118
cheese 119–20
dairy products 117–20
kefir 118–19
meat products 120
tempeh 122
vegetable fermentation 120–1
vinaigre 121
yogurt 117–18
future trends 131
sustainability 131
technologies
batch fermentation 112
continuous fermentation 113
fed-batch fermentation 113
immobilized cell
fermentation 113–14
Fick’s first law of diffusion 257
filtration 34–5
fixed electric field processing summary table 145
flash dryers 74
flavor of foods 82
flocculation 114
flour milling process 300–1
flow behavior index 27
fluid flow 3–4
fluidized bed dryers 73–4
formula method for thermal process calculation 27
Ball formula method 27–8
fouling of membranes 49–50
membrane type and material 52
nature and concentration of feed 50–2
operational conditions 52
fractionation of oils and fats 470
aqueous detergent 470
dry 470
solvent 470
free moisture 67
freeze dryers 72
freezing 9
frozen concentrate orange juice (FCOJ) 345
fruit and vegetable beverages 339–1, 360
classification and regulations 339–40
clean-in-place 358–60
general processing operations 341
juices
apple 348–51
carrot 355–6
citrus 341–8
tomato 351–4
nectar 356
mango 357–8
fruit and vegetable processing technologies
basic techniques 369
blanching 375–6
canning 378
cooling 372–3
dehydration 377–8
freezing 376–7
grading 369–71
minimal processing 378–9
peeling 373–5
size reduction 376
washing 371–2
raw materials
chemical composition 363–5
enzymes 368–9
pigments 365–8
sustainability 379
fruit juices membrane separation 54
functional unit (FU) 221
fungi 20
general method for thermal process calculation 26–7
Generally Regarded As Safe (GRAS) 276
fermentation cultures 111
germination/sprouting of legumes 310
glass for food packaging
forming of glass 262–3
recycling 268–9
global food trade and risk from adulterated or misbranded foods 279–80
gold nanoparticles (AuNPs) 179, 180
Good Agricultural Practices (GAP) 235
Good Manufacturing Practice (GMP) 234
green technologies 212–13
separation and extraction technologies 213–14
groundnut 306
Guggenheim-Anderson-deBoer (GAB) model for vapor adsorption 67–8
Hazard Analysis Critical Control Point (HACCP) 234, 235–6
beef and pork processing 547
steps involved 235
heat penetration (HP) test 24–6
factors affecting heating behavior 25
heat penetration curve 26
heat transfer 2–3
alternative technologies
infrared (IR) heating 140–1
microwave heating 137–9
ohmic heating 141–2
radiofrequency (RF) heating 139–40
sous-vide 142–4
chilling and freezing of foods 86
conduction 86
convection 86
evaporation 87
radiation 86–7
cooling processes
refrigeration and freezing 9
heating processes
aseptic processing 8
drying 9
microwave heating 8–9
ohmic heating 9
pasteurization and blanching 7–8
sous-vide cooking 8
thermal stabilization 8
heating lag factor 26
high hydrostatic pressure processing (HHP) 144
effect on sensory and nutritional quality of foods 148–9
equipment 147–8
food processing applications 148
pressure-assisted thermal sterilization (PATS) 149–50
summary table 145
high-density polyethylene (HDPE) 251–2
high-impact poly styrene (HIPS) 252
high-pressure cooking of legumes 311
high-pressure freezing systems for chilling or freezing foods 91–2
high-pressure processing 10–11
high-temperature, short-time (HTST) pasteurization 389
homogenization
ice cream 395–6
milk 387–9
hot air drying 62–3
evaporation of water 64
moisture content definitions 63–4
moisture content definitions 67
product equilibrium 63
psychrometric equations 64–5
wet bulb temperature 65–7
hurdle technology 12
hydrogenation of oils and fats 471
hydrolases 124
hydrolases 124
hydrase 530
ice cream 383, 392
aging 396–7
blending 394–5
flavoring 397–8
freezing 398–9
hardening 399–400
packaging 399
pasteurization and homogenization 395–6
preparation for processing 393–4
processing steps 394
raw materials 393
storage and shelf life 400
ice systems for chilling or freezing foods 90–1
ideal gas equation 64
immersion systems for chilling or freezing foods 89–91
immobilized cell fermentation 113–14
infrared (IR) heating 140–1
effect on sensory and nutritional quality of foods 141
equipment 140
food processing applications 140–1
injection moulding of plastics for packaging 256
in-store dryers 72
interesterification 471–2
ionizing radiation processing summary table 146–7
ionomers 254–5
irradiation of foods 10, 150
effect on sensory and nutritional quality of foods 151
equipment 150
food processing applications 150–1
isingsglass 530
isomerases 124
kefir 118–19
kiln dryers 72, 75
kinetics
destruction of a microbial population 21–3
destruction of quality attributes 23–4
process optimization 24
lactic acid in cheese 119–20
lactose 386
lactose-free and lactose-reduced milks 391
laminar flow 26
Langmuir vapor adsorption theory 67
lauric oils 458
laws and regulation 275–6, 291
adulteration and misbranding 276–9
Environment Protection Agency (EPA) programs 283
Food Safety Modernization Act 283–91
provisions 285
global food trade and risk from adulterated or misbranded foods 279–80
ingredients and additives 276
US Department of Agriculture programs 280
Agricultural Marketing Service (AMS) 281
Animal and Plant Health Inspection Service (APHIS) 281
country of origin labeling (COOL) 281–2
Food Safety and Inspection Service (FSIS) 280–1
international trade 281–3
marketing and regulatory programs 281–2
organic foods 282–3
legumes 305–6, 331
ingredients from fiber products 326
flours 312–20
novel applications 329–31, 332
nutraceutical products 326–9
oil 312
protein concentrates and isolates 320–4
starch flours and concentrates 324–6
processing technologies 306–7
processing technologies, contemporary 310
agglomeration 312
air classification 311–12
canning 311
extrusion cooking 310–11
high-pressure cooking 311
processing technologies, traditional 307
cooking 308–9
dehulling 309–10
fermentation 309
germination/sprouting 310
puffing 310
soaking 307–8
lentil 306
lethal rate (L_r) 22
life cycle assessment (LCA) 213, 214, 216
challenges and applications 221–3
goal and scope 218
impact assessment 218–21
interpretation 221
inventory analysis 218
method 216
software and databases 227
standards 216–18
summary and studies 224–6
ligases 124–5
linear low-density polyethylene (LLDPE) 252
lipases 125–6
liquid diffusion 68
liquid egg products 445–6
low-density polyethylene (LDPE) 251–2
low-temperature, long-time (LTLT) pasteurization 389
lyases 124
lye peeling 373
magnetic nanoparticles 179
maize (corn) 293
corn masa process 299–300
dry milling 297–8
corn bran 299
corn oil 298–9
flaking and smaller grits 298
kernel composition 294–5
wet milling 295
oil 296–7
starch 295–6
mango nectar production cultivation 357
harvesting and handling 357
major producers and markets 358
processing 357
enzyme inactivation 358
microbial inactivation 358
peeling 358
packaging for foods 12–13, 249
functions
communication 250
containment 249
protection/preservation 249–50
utility 250
materials
active packaging 266–8
aseptic packaging 263–4
glass 262–3
metals 260–2
modified atmosphere packaging (MAP) 264–6
paper and paper-based materials 258–60
plastics 251–8
sustainable packaging
biodegradable packaging 269–72
recycling 268–9
systems 250
consumer/industrial packaging 251
primary packaging 250
secondary packaging 250
tertiary packaging 250–1
unit load 251
packaging materials 5
packaging technology
nanotechnology applications
antimicrobial film 194–5
nanocomposites 191–2
nanocomposites, biodegradable 193–4
self-assembled fibrils 195–7
paper and paper-based materials for food packaging 258
paper types 259
bleached paper 259
greaseproof paper and glassine 259
kraft paper 259
vegetable parchment 259
waxed paper 259

paperboard cartons and other containers 260
paperboards 259
cartonboard 260
chipboard 260
corrugated board 260
foodboard 260
linerboard 259
whiteboard 259
recycling 268
partial hydrogenation 471
pasteurization 7–8
egg products 446–7
alternative method 447–8
ice cream 395–6
milk 389–91
redefined 11
pea 306
pectic enzymes 128–9
permeability of packaging plastics 247
basic theory 247–8
personal practices 238
pervaporation 56–7
pest control 240
pH levels of foods 5
phase separation processes
liquid–gas
evaporation 42–3
supercritical fluid extraction (SFE) 43–6
liquid–liquid
crystallization 37–8
distillation 38–9
solvent extraction 39–42
photo-oxidation 462–3
physical contaminants 239–40
physical stability of foods 62
pigments from plants
anthocyanins 365–7
betalains 368
carotenoids 367–8
chlorophyll 365
plastics for food packaging 251
examples
additives 255
ionomers 254–5
polyamides (PA) 254
polycarbonate (PC) 254
polyethylene (PE) 251–2
polyethylene terephthalate (PET) 253
polypropylene (PP) 252
polystyrene (PS) 252
polyvinyl alcohol (PVOH)/ethylene vinyl alcohol (EVOH) 252–3
polyvinyl chloride (PVC) 253
polyvinylidene chloride (PVDC) 254
processing and converting
blow molding 256–7
extrusion 255–6
injection molding 256
permeability of plastics 247–8
thermoforming 256
recycling 269
pneumatic separation 35–6
polarization of membranes 49–50
pork 535
characteristics
composition 535–6
relationship between color, pH and water-holding capacity 536
tenderness 536–7
Hazard Analysis Critical Control Point (HACCP) 547
processing categories 537
bind values 540–1
cooked and precooked whole-muscle cuts 543–4
cooked sausages 544
dried whole-muscle product 545
fermented sausages 544–5
fresh ground 541–3
whole-muscle processing 537–40
processing equipment 545
eumulsifier 546
grinder 545–6
injector 546
massagers 546
mixer 546
slicer 546
smokehouse 546–7
stuffer 546
tumbler 546
sustainability 547
positive displacement pump 4
post bleaching 471
potato
canning 378
cooling 373
dehydration 377–8
grading 370–1
minimal processing 378–9
peeling 375
size reduction 376
washing 372
poultry processing 549, 565
duck processing 562–3
microbiology
 food safety 563–4
 spoilage 563
packaging and labeling 561
preprocessing 549
primary processing
 chilling 553–4
 evisceration 552–3
 slaughter 550–2
secondary processing 554
 cut-up 554
 deboning 554–5
 grinding 555
 mechanical separation 555–6
 portioning 555
subsequent processing 557
 bone-in and whole muscle 557
 coating 559
 freezing 560
 heating 559–60
 marinating 557
 muscle formulation 557–9
 sustainable 564–5
 transport 561
turkey processing 562
precipitation 116–17
pressure-assisted thermal processing
 (PATP) 10
pressure-assisted thermal sterilization
 (PATP) 10, 149–50
principles of food processing 1–2, 13–14
aims of food processing 1
common preservation and processing technologies
 aseptic processing 8
 drying 9
 goals of food processing 7
 high-pressure processing 10–11
 microwave heating 8–9
 non-thermal food processing and preservation 10
 ohmic heating 9
 pasteurization and blanching 7–8
 pasteurization redefined 11
 pulsed electric field (PEF) processing 11
 refrigeration and freezing 9
 sous-vide cooking 8
 thermal stabilization 8
 thermal transfer 7–9
 ultrasound 11
emerging issues and sustainability in food processing 13
other processing/preservation technologies
 baking 12
 extrusion 12
 fermentation 12
 hurdle technology 12
 packaging for foods 12–13
 thermophysical, microbial and other considerations
 acidity of foods 5–6
 biological properties of foods 5
 cleaning and sanitation 4–5
 engineering properties of foods 5
 microbiological considerations 5
 packaging materials 5
 raw material handling 4
 reaction kinetics 6–7
 water activity of foods 5–6
unit operations 2
 fluid flow 3–4
 heat transfer 2–3
 mass transfer 3
 mixing 4
 separation 4
 size adjustment 4
process monitoring and control, critical factors in thermal processing 29
process optimization 24
product equilibrium 63
propionic acid in cheese 120
proteases 129–30
proteinase A (PrA) 111
psychrometric charts 69–70
psychrometric equations 64–5
publicly available specification (PAS) 217–18
puffing of legumes 310
pulsed electric field (PEF)
 processing 11, 155
 effect on sensory and nutritional quality of foods 156
 equipment 155
 food processing applications 155–6
 pulsed UV light (PL) processing 153–4
 effect on sensory and nutritional quality of foods 154–5
 equipment 154–5
 food processing applications 154
summary table 145–6
quality assurance (QA) 233, 246
hazard analysis critical control point (HACCP) 235–6
 steps involved 235
product quality assurance 245–6
supporting prerequisite programs
 complaint management 243
 market withdrawals and recall plan 244
 supplier approval 242–3
 traceability 244–5
total quality management (TQM) 233–5
quantum dots (QDs) 179, 182–5
radiation heat transfer 3, 86–7
radiofrequency (RF) heating 139
effect on sensory and nutritional quality of foods 140
equipment 139
 food processing applications 139
radiofrequency identification (RFID) 250
raw material handling 4
reaction kinetics 6–7
recall plans 244
recycling of food packaging 268
 aluminium 269
glass 268–9
paper and paperboard 268
plastics 269
refrigeration 9, 102–3
 air systems 87–9
 aquatic food products 514–15
 contact systems 89
cryogenic systems 91
environmental considerations 100–1
 heat transfer 86
 conduction 86
 convection 86
 evaporation 87
 radiation 86–7
 high-pressure freezing systems 91–2
 ice systems 90–1
 immersion/spray systems 89–91
principles 84
 mechanical refrigeration systems 85
total loss refrigeration systems 84–5
retail display systems 95–8
 frozen foods 99
 unwrapped products 98
 wrapped products 98–9
scraped surface freezers 91
refrigeration (cont’d)
specifying, designing, and
commissioning systems 101–2
storage systems 92–3
temperatures, recommended 99–100
transport systems 93
air transport 94
land transport 94–5
sea transport 93–4
vacuum systems 91
residence time distribution (RTD) 27
retailing display systems for chilled or frozen foods 95–8
frozen foods 99
unwrapped products 98
wrapped products 98–9
retorting 19–20
reverse osmosis (RO) 46
performance parameters 48
rotary dryers 73

safety of foods 233
sanitary processing conditions
allergens 241
cleaning and sanitation 237
design and maintenance of plants and equipment 236–7
environmental testing 241–2
personal practices 238
pest control 240
physical contaminants 239–40
transport and storage 238–9
water quality 240–1
sanitation processes 4–5, 237
allergens 241
design and maintenance of plants and equipment 236–7
environmental testing 241–2
fruit and vegetable beverages 358–60
personal practices 238
pest control 240
water quality 240–1
scraped surface freezers for chilling or freezing foods 91
self-assembled fibril packaging
materials 195–7
separation and concentration
technologies 4, 33–4
green technologies 213–14
membrane separation processes
applications 52–5
basic principles 46
brewing and wine industry 55
dairy products 53–4
fruit juices 54
membrane configurations 46–9
polarization and fouling phenomena 49–52
sugar refining 54
vegetable juices 54
vegetable oils processing 54–5
other membrane-based processes
electrodialysis (ED) 55–6
pervaporation 56–7
phase separation processes
crystallization 37–8
distillation 38–9
evaporation 42–3
solvent extraction 39–42
supercritical fluid extraction (SFE) 43–6
physical separation of food components 34
centrifugation 35
filtration 34–5
mechanical expression 36–7
pneumatic separation 35, 6
sustainability 57–8
Simpson’s rule 26
simultaneous saccharification fermentation (SSF) 112, 113
single-walled carbon nanotubes (SWCNTs) 179
size adjustment 4
smoked fish 524
solid-state fermentation (SSF) 309
solvent extraction 39–42
solvent fractionation 470
sonication (ultrasound processing) 11
sour cream 422
processing
breaking 423
dips 424
filled 424
heat treatment 423
homogenization 423
hot pack process 423
imitation 424
lower fat content 423
mix preparations 423
packaging and coding 423
quality control 424
raw materials 422
ripening 423
sous-vide cooking 8, 142
effect on sensory and nutritional quality of foods 143–4
equipment 142–3
food processing applications 143–4
soybean 306
foods and ingredients 313
spouted bed dryers 74
spray dryers 73
spray systems for chilling or freezing foods 89–91
standard operating procedures (SOPs) 237
steam peeling 373–4
sterilization techniques 19
aseptic processing 20
retorting 19–20
storage systems
chilled or frozen foods 92–3
cleaning and sanitary practices 238–9
sugar refining membrane separation 54
supercritical fluid extraction (SFE) 43–6
supplier approval 242–3
surface-enhanced Raman spectroscopy (SERS) 185–91
μSERS 189–90
surimi and surimi analog products 520–1
sustainability and environmental issues 207, 227
alternative food processing technologies 159
energy savings 159–60
reduced gas, emissions and water savings 160
solid waste generation 160
aquatic food products 531
assessment methods 214–15
carbon footprint (CF) 215
ecological footprint (EF) 215–16
life cycle assessment (LCA) 216–27
beef and pork processing 547
carrot juice beverages 356
cereal milling 302–3
chilling and freezing of foods 100–1
citrus juice beverages 347–8
dairy products 402
dehydration processes 77
drivers of sustainability 207
consumer drivers 209
corporate performance drivers 209–10
economic drivers 208–9
legislative drivers 207–8
egg and egg products 450–1
environmental aspects of food processing 210
energy 210–11
solid waste 211–12
water supply and waste water 212–13
fats and oils from animals 497
fermentation and enzymatic processes 131
fruit and vegetable processing 379
green technologies 212–13
non-thermal processing 214
separation and extraction technologies 213–14
mango nectar production 358
nanotechnology 198–9
packaging for foods biodegradable packaging 269–72
recycling 268–9
poultry processing 564–5
separation and concentration technologies 57–8
tomato juice beverages 354
whey processing 431–5
tempeh 122
temperature distribution (TD) test 24
measurement validation 28
measuring devices (TMDs) 24
wet bulb temperature 65–7
texture of foods 82–3
thermal death time (TDT) 22
thermal principles 17
emerging processing technologies microwave heating 29–30
ohmic heating 29
formula method 27
Ball formula method 27–8
future trends 30–1
general method for thermal process calculation 26–7
microorganisms 20–1
factors affecting growth 21
numerical methods 28
AseptiCal™ 28
CTemp 28
NumeriCal™ 28
process monitoring and control critical factors 29
thermal kinetics
destruction of a microbial population 21–3
destruction of quality attributes 23–4
process optimization 24
thermal process calculation 26
thermal process establishment 24
heat penetration (HP) test 24–6
temperature distribution (TD) test 24
thermal process validation 28
microbiological validation 28–9
temperature measurement 28
time–temperature integrators (TTIs) 29
thermal processing methods 17–18
blanching 18
hot filling 19
pasteurization 18–19
sterilization 19–20
thermal stabilization of foods 8
thermoforming of plastics for packaging 256
time–temperature integrators (TTIs) 29
tin-free steel (TFS) 260
tomato
canning 378
cooling 373
grading 370
peeling 374–5
size reduction 376
washing 371–2
tomato juice beverages
cultivation 351
harvesting and handling 351–2
major producers and markets 354
processing 352
break process 352–3
concentration 353
enzyme inactivation 354
homogenization 353
juice extraction 353
microbial inactivation 354
packaging 353
processing condition 354
sorting 352
product quality 354
sustainability 354
total loss refrigeration systems 84–5
total quality management (TQM) 233–5
traceability 244–5
trans-fatty acids 461
transferase 124
transmembrane pressure (TMP) 50, 52
transmissible spongiform encephalopathy 488
transport systems
chilled or frozen foods 93
air transport 94
land transport 94–5
sea transport 93–4
cleaning and sanitary practices 238–9
tray dryers 72
turbulent flow 26
turkey processing 562
ultra high-temperature (UHT) pasteurization 389
ultrafiltration (UF) 46
performance parameters 48
ultrasound (US) processing 156–7
effect on sensory and nutritional quality of foods 158–9
equipment 157
food processing applications 157–8
summary table 146
ultrasound processing 11
ultraviolet light processing 151–2
effect on sensory and nutritional quality of foods 153
equipment 153
food processing applications 152–3
summary table 145–6
unbound moisture 67
uniform transmembrane pressure (UTP) 53
unit operations in food processing 2
fluid flow 3–4
heat transfer 2–3
mass transfer 3
mixing 4
separation 4
size adjustment 4
Universal Product Code (UPC) 250
vacuum cooling 373
vacuum systems for chilling or freezing foods 91
validation of thermal processes 28
microbiological validation 28
count reduction method 28–9
end point method 29
temperature measurement 28
time–temperature integrators (TTIs) 29
vapor adsorption theories 67–8
vapor diffusion 68
vegetable juices membrane separation 54
vegetable oils processing membrane separation 54–5
Index

vegetables see fruit and vegetables
vinegar 121
volume concentration factor (VCF) 49

water activity of foods 5–6, 61
 examples 6
water cooling 372–3
water quality 240–1
water vapor transmission rate (WVTR) 258
weight loss and food quality 81–2
wet bulb temperature 65–7
wet milling of corn (maize) 295
 oil 296–7
 starch 295–6
wet milling of wheat 301–2
wheat 300
 flour milling process 300–1
 kernel composition 300
 wet milling 301–2
 whey processing 431–5
 wine 121–2
yeasts 20–1
yogurt 117–18, 410–11
 live and active status of yogurt
 culture 420–1
 manufacturing different varieties
 aerated yogurt 418–19
 blended styles 417–18
 frozen yogurt 419
 Greek style 418
 light yogurt 418
 plain yogurt 416–17
 yogurt beverages 418
 nutrient profile 421–2
package and storage 419
 quality control 419–20
processing 414
 changes in milk constituents 415–16
 contribution of culture to
 texture and flavor 415
 fermentation 415
 heat treatment 414
 homogenization 414–15
 mix preparation 414
raw materials
 culture 411–13
 dairy ingredients 411
 fruit flavor preparations 413–14
 stabilizers 413
 sweeteners 413
yolk of egg 440–1